electric field on the anode* and jp; is reduced to the value of jhi ~jeq(m/Mn)!/2 Correspondingly, the current
of light ions is also reduced (jzj ~ joo (m/Mp)!/2/x) and this leads to the reduction of je to the initial value je,.
Only as the diode gap is being filled by heavy ions and the electric charge is neutralized by them does jg in-
crease {the characteristic time now is 7y) to the level corresponding to the stationary solution with ion flows.

The above considerations are illustrated by computation results for variants witho =0.5;0.8. Since now
a~1, At ~ 7} , the effects characteristic for the initial stage of the process appear in the diagrams as splashes
je and jzi of duration ~ 7. A further slow change of je (see Fig. 6) is due to the motion of heavy ions.

The author would like to express his thanks to D. D. Ryutov, at whose initiative this work was carried
out, for his valuable comments. '
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*Here it may be essential to take into account the thermal expansion of the plasma. If the expansion rate is
sufficiently high, then the plasma may cover a thin layer of heavy ions neutralizing their charge. Therefore,
the described pattern takes place only when the anode plasma is sufficiently cool.

NUMERICATL SIMULATION OF THE SELF-FOCUSING
OF WAVE PACKETS IN A MEDIUM WITH STRICTION
NONLINEARITY

A. F. Mastryukov and V. S. Synakh _ ‘ UDC 535 +534.222

During the propagation of powerful laser pulses in many media (e.g., crystals and plasma), the non-
linear increment to the dielectric constant associated with the development of sound perturbations may be very
considerable. Striction nonlinearity may lead to the self-focusing of laser pulses, which in turn may be ac-
companied by the development of severe elastic stresses in crystals.

In this paper we shall make a numerical study of the propagation of axially symmetric wave packets in
a medium with striction nonlinearity within the framework of the equations [1, 2]

i(u, + vu,) + Aju + opu =0, (1
p”—c‘pr =—Alul?
and the natural boundary conditions

Bulor|,—p = 0pi0rl,=0 = 0,
u(r = oo} = p(r = ). = 0,
u(jzl = o) = p(lz] = o) =0,

where u is the envelope of the wave packet; v and cg are the group velocity of light and the velocity of sound in
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the medium; p is the perturbation of the density of the medium; ¢ is a constant determined by the specific

mechanism of excitation of the striction nonlinearity; A, - 1_9_
- r

In accordance with [3] the term describing the dispersion (~uz;) is omitted from (1).

Specific numerical experiments were carried out for the initial conditions

u(t = 0) = Adexp(—r2 P — (= — a)*¥/L¥,
p(t=0)=]u(t=0)]c,

p¢(t=0)=0.

Let us first consider the propagation of long pulses L. In this case we may neglect the longitudinal
We thus obtain

( _0‘7_) All the quantities are made dimension-
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i, + A utopu=0, p,—cA u=—AJuf. ' @

We may convince ourselves by direct substitution that as t —t, the system (2) asymptotically satisfies
an automodel substitution analogous to that given in [4]:

.= (A/(to — )R(r/(ty — 1)), u = (Mi(to — &) )YU(Ar/(to— 1))- (6]

Since the solution (3) has a singularity at t —~t;, this means that for extended pulses (beams) a collapse
may be created in a finite time t,. The possibility of the solution (2) passing out to the automodel state is con-
firmed by the numerical experiment. Figure 1 shows the maximum values of p and |u| as functions of t cal-
culated for a beam (L =«) with parameters A=1;1=38 at o =5,

Let us make some estimates regarding the conditions for the development of sucha collapse and its
time of development t,. For this purpose we consider the stability of a stationary solution of the system (2).in
the form

0 = Poy U = ay exp (i),
where pg, agare constants; ¢ =oyp . Substituting p=pg+08p,u={uy+da) exp (ip +id¢) in (2), where 3¢, da,
3p are small increments, linearizing the equations obtained for these, and then assuming that these increments
are proportional to exp (ikr —iwt), we obtain the equations
ioba + Kabp = 0, k*8a + iwady — oagdp = 0,
— 2k2a,8a + (ciht — ©2) 8p = 0.
These equations lead to the dispersion equation
20% = k4 c2k® o [(kt 4 K2%2)* — 4 (00 — 20aik4) 2. 4
We see from (4) that the solution is unstable if
k22 — 2003 < 0. (5)

The quantity @, may be identified with'the characteristic initial amplitude and k regarded as equal to
1/l , where I is the characteristic initial transverse dimension of the beam. Then a? /&? has the sense of the
power (intensity) P. We may thus write down the approximate condition for the self-focusing of wave beams
(packets) in a medium with striction nonlinearity:

P>c2[2.

On satisfying this condition the quantity 1/Im¢v) constitutes an estimate for the development time of the col-
lapse tj.. If k«1, then.

to~ V21 [(V ¢ 4 80a} — ). ®
Numerical experiments confirm the estimates (5) and (6).
For a pulse of initial length L it is reasonable to assume that a collapse is formed if the time of non-
linear interaction of the pulse with the medium ¢, = L/v(1 —cg/v) is much greater than ty:
Y=1t/t>> 1. : (M

If condition (7) is not satisfied, we should expect that after the point of maximum' contraction of the wave
packet the latter will spread by virtue of diffraction and dispersion. In the geometrical optics approximation
the time tymax to reach the maximum may be estimated as

tmax. ~ |Lto/(8 — %)

Figure 2 illustrates precisely this relationship as observed in numerical experiments; it shows the
behavior of up,,,=max |u(o, z, t)| as a function of t for pulses with parameters A=0.6; [=3; L =1;¢5 =1 at-
o =5, v being a variable parameter. The quantity a o in the expression for y is put equal to 1/ZA. It should be
noted that the specific value of the coefficient. (here 1/2) has little effect on the value of v,
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Numerical experiments were carried out in the following range of variation of the initial pulse param-
eters: 0.5=A <1;1=3; L=1, «; ¢cg=1; 1 sv=4 for ¢ =5, and also for v/eg>1 (up to 10%), The qualitative
picture remained unchanged.

Figures 3 and 4 present a typical picture of the evolution of the initial pulse in the absenceofacollapse,
One notices the following features:

1. For fairly long times t, increasing oscillations of the field |u| and perturbations of the density p
arise. In the front of the pulse p becomes negative, and the field is "thrown" to the periphery.

2. At a later stage in the propagation of the density a second maximum arises; this first lags relative
to the principal maximum, stops, and then moves in the opposite direction at a velocity cg. The latter situation
is a consequence of the fact that in this region the field Ju| is weak and the second of Egs. (1) becomes purely
a wave equation.

3. With the progress of time the velocity of the maximum-field region diminishes and the sharpness of
the leading edge of the wave of density increases. This may lead to the development of severe elastic stresses
in the medium. Such a situation is possible, for example, for the motion of a laser focus in a nonlinear medium,
when the velocity of the focus approaches that of sound [51.

For the numerical experiments we used an implicit-difference scheme of the second order of accuracy
in all the variables, with a nonuniform space lattice. A typical time step was approximately 0.01, while for
v/cg >>1 it fell to 5- 104 The spatial steps were about 0.01., The stability of the scheme for various values of
the parameters was verified by a repeated calculation with altered steps,

The authors wish to express their thanks to V. E. Zakharov for discussing the presentation of the prob-

lem.
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